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S U M M A R Y  
Axisymmetric steady flow of a perfect gas in a rotating cylinder is studied by applying a linearised analysis to a 
small perturbation about isothermal rigid body rotation. Motivated by present day gas centrifuges, special 
attention is focussed on the effect of a length-to-radius ratio which increases from unit magnitude to infinity and on 
the effect of a strong radial density gradient associated with the isothermal rigid body rotation. The Ekman number 
E,  based on the small radial density scale and the density at the cylinder wall is taken to be small. It appears that 
the flow outside Ekman boundary layers at the end caps consists of three types. These correspond to 
1 ~ L.  ,~ E ,  ½, E ,  * ~ L, ,~ E ,  1 and E ,  1 ~ L,, where L.  is the ratio of the cylinder-length to the radial density 
scale. For 1 ,~ L.  ,~ E ,  ~ an inviscid flow in a region of limited thickness near the cylinder wall is found. Due to the 
strong decrease of the density, radial diffusion is not confined to Stewartson boundary layers at the wall (typical for 
incompressible flow) but extends in the core. This finds expression in two layers in the centre of the cylinder, 
parallel to the rotation axis, having a structure similar to both Stewartson layers and adjusting the inviscid flow 
near the wall to a flow dominated by radial diffusion near the rotation axis. For L.  ~ E ,  ~ and L.  ~ E ,  1 both 
Stewartson layers become successively of the same thickness as the density scale. At the same time the 
corresponding layers in the core go to the wall and join. As a result, for L, > E ,  1 radial diffusive processes are 
significant in the entire cylinder, a situation also known from studies of flows in semi-infinite gas centrifuges. 

1. Introduction 

Linearised analysis of the almost isothermal rigid body rotation of a perfect gas in a cylinder 
has revealed two kinds of solution. The first kind [1, 2, 3, 4] is analogous to the type of 
solutions obtained for incompressible fluids [5] and is characterised by Ekman layers near 
the end caps and Stewartson layers near the cylinder wall. In the second kind, arising from 
the study of a cylinder of semi-infinite length [6, 7, 8, 9J, radial diffusion of heat and 
momentum is not confined to Stewartson layers but extends over the entire cross section of 
the cylinder. These solutions show a decaying behaviour in the direction of the cylinder axis. 

In this paper the almost isothermal rigid body rotation of a perfect gas in a cylinder is 
studied in detail, with special reference to present day gas centrifuges used for uranium 
enrichment. Emphasis is given to the effect of the length-to-radius ratio and to the effect of 
the radial density gradient associated with the basic isothermal rigid body rotation. It 
appears that the solutions mentioned above form special cases in a much more general 
family of solutions with the Ekman number, the length-to-radius ratio and the ratio of the 
circumferential speed to the most probable molecular speed of the gas as parameters. 
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2. The statement of the problem 

Consider a cylinder of radius a and length l filled with a viscous, thermally conductive, 
perfect gas. In rigid rotation at constant angular speed/2 and constant temperature T O the 
density Pe is, as a function of the dimensionless radial distance from the rotation axis r, given 
by 

p~ = pw exp{A(r 2 - 1)}, (2.1) 

where Pw is the density at the cylinder wall, r = 1. The speed parameter A is defined as the 
square of the ratio of the circumferential speed to the most probable molecular speed: i.e. 

A = ½122a 2 M / R o T  o, (2.2) 

where R 0 is the universal gas constant and M the molecular weight of the gas. From the 
perfect gas equation one finds for the pressure 

Pe = peRoTo/M. (2.3) 

We consider a small perturbation of this isothermal rigid body rotation, caused by 
temperature disturbances on the co-rotating horizontal end caps at z = 0 and z = 1 of the 
form 

To(1 + eFx(r)) and To{1 + eF2(r)}, 

respectively, where z is the dimensionless axial distance and where e is a small quantity. In 
the perturbed state we describe temperature, pressure and density with 

T =  To(1 +e0), (2.4) 

P = ee(1 + ep), (2.5) 

p =p, (1  +ez). (2.6) 

For axisymmetric steady flow the velocity components u, w, v in radial, axial and azimuthal 
directions respectively, can be expressed in terms of the stream function ~ and the angular 
speed perturbation 09 by 

Qa2r ~ Qa ~ 2 
u =  - e  p ~  d~(pv), w = e  pr -~r (pr ~), (2.7) 

v = arl2(1 + tin). (2.8) 

Upon the neglect of terms of second and higher order in e the Navier-Stokes equations 
reduce to 

~Z ({ 1 a 1 -A'2-1) 0 r2+L-2e-at'2-1) ~2 } 2 
( 2 m - 0 ) = L E  Or r e ~r ~--r az 2 
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~ {2AL-le-a( '~-~)r ~--7}2]eA('a-')~, (2.9) 

- 2  =LEe-At":-*) 0 1 0 r2+ e~, 
0r r Or c)z2J 

(2.10) 

where L is the aspect ratio, 

L = l/a, (2.11) 

and E the Ekman number based on the radius of the cylinder and based on the density at the 
cylinder wall, 

E = p/pwOa 2, (2.12) 

p being the dynamic viscosity. Equation (2.9) results from elimination of p between the 
radial and axial momentum equations, (2.10) is the azimuthal momentum equation. The 
terms on the right hand sides of (2.9) and (2.10) represent viscous forces, which are balanced 
by Coriolis forces, centrifugal forces and pressure gradients. The energy equation is, in 
linearised form 

r2Br ~z  = LEe-  at'2- ~r r ~r + Oz2 j O' (2.13) 

where Br is the Brinkman number [10] 

Br = flff22 a2 /tc To, (2.14) 

x being the thermal conductivity. The term on the left hand side of (2.13) represents the work 
done by compression when the fluid moves radially (u(O/&)P), which is balanced by heat 
conduction. The boundary conditions are such that the velocities and temperatures coincide 
with those of the walls: i.e. 

og = ~ = (O/Or)~t = O = O at r = 1, (2.15a) 

co = q/= (t~/Oz)gt = 0 at z = 0 and z = 1, (2.15b) 

0 =Fl ( r ) ,  r < l ,  at z = 0 ,  (2.15c) 

0 = F2(r), r < 1, at z = 1, (2.15d) 

where F~ and F 2 are smooth functions of r. 
The Ekman number is taken to be small and the Brinkman number is of unit magnitude. 

The case that the speed parameter is of unit magnitude and the case that the speed 
parameter is large will be discussed. The aspect ratio is varied from unit magnitude to 
infinity. 
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The dynamical equations (2.9), (2.10) and (2.13) are transformed into 

2 ~ z =  [Jr Or r e ~r r +L-2e-A(r2-1) 2 

_ 4  0 2 
~{2AL-le-A('2-1)r~z}]eA('2-1)q/, (2.16) 

- x ) F ~ l  ~-~-1(1 +¼r2Br)~r(l +¼r2Br)-'r 2 -2( l  +¼r2Br) oz =LEe-a('2 L[r  Or r 

02 -~- (1 + l~bl, (2.17) L_ 2~z2} Z 1 O_ ¼r2Br)_ 
+ r Or 

( 1 0  ~r +L-2 f-ff~) l ~ r  ~rr(1 + ¼r2Br) (1 +¼r2Br) -~ c~ =Br--r r2(1 +¼r2Br)-lX, (2.18) 

where 

±0 ½r2Brog. (2.19) Z = ~ o - 2  , 4 ~ = 0 +  

Here, equation (2.16) is the same as (2.9). Equation (2.17) is obtained by multiplying (2.13) 
with ½ and subtracting this from (2.10). Equation (2.18) is found by eliminating (O/Oz)q/from 
(2.10) and (2.13). The equation for ~b, (2.18), is only coupled to those for Z and q/, (2.16) and 
(2.17), by means of the term in ~b on the right hand side of (2.17). Consider the meaning of 
this term for the cases of interest. In case of an inviscid flow for ~, and Z, extended by 
boundary layers, the term in ~b is insignificant. In an inviscid domain the entire right hand 
side of (2.17) can be neglected. In thin boundary layers the term is still negligible since it does 
not contain the highest derivatives with respect to r and z. On the other hand, the term in q~ 
becomes significant when radial diffusion of X is important in a region of radial extent 
comparable with the radius. For A ,,~ 1 this happens when L is large (since L multiplies the 
small E in (2.17)) and, as a result, the z-derivatives of q~ in (2.18) can be neglected. 

Integrating the remaining equation with respect to r and requiring that ~b and Z are finite 
as r -o 0, one gets 

1 0 
r dr (1 +¼r2Br)-lq~ = Br(1 +¼r2Br)-2X, (2.20) 

a result that can be used to eliminate the term in ~b on the right of (2.17). For A >> 1 it 
appears that O/Or ~ A (see section 4) so that the z-derivatives in (2.18) can be neglected 
when LaA 2 >> 1, which applies when L is of unit magnitude or larger. Therefore, in all cases 
of interest (2.20) may be substituted into (2.17). We are now in the fortunate position that 
only these two equations have to be considered in order to obtain a solution for Z and ~,. 
This is especially advantageous for gas centrifuge problems where one is mainly interested in 
the distribution of the axial and radial velocity. The small perturbations of the angular speed 
and temperature are of less importance so that the extra equation (2.18) does not need to be 
considered. Substitution of (2.20) into (2.17) gives for Z and q/the equations 
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t3Z = LEF~ I ~ 1 e_at,2_l) 0 r2 + L_ 2e_Atr2_l, ~2 }2 
2~7-z [_ [ r  ~Tr r a--7 &2 

- 2 = -  = L E  - n ( r 2 - 1 )  ]Z  (2.22) Cz ~- (1 + ¼raBr)-lr a + (1 + ¼r2Br)-lL-a~z2 j . 

The boundary conditions are 

Z = ~ = (3/Or)~, = 0 at r = 1, (2.23a) 

~, = (O/&)~, = 0 at z = 0 and z = 1, (2.23b) 

Z = -½Fl(r),  r < 1, at z = 0, (2.23c) 

Z = -½F2(r), r < 1, at z = 1, (2.23d) 

where F~ and F 2 are smooth functions of r. 

3. The small density gradient 

Consider the case A ,,~ 1. Replacing Z by o9 one sees that the differential equations (2.21) and 
(2.22) with boundary conditions (2.23) are quite similar to those given by Greenspan [5] 
and Stewartson [11] for an incompressible fluid. The exponential function stemming from 
the density distribution at isothermal rigid body rotation is of unit magnitude and does not 
change the magnitude of the terms in which it occurs. The same applies to the terms formed 
with the Brinkman number since Br ~ 1. A similar procedure as usually applied to 
incompressible cases is therefore appropriate. In the limit of E ~ 0 equations (2.21) and 
(2.22) reduce to 

( ~ / & ) z = O ,  (~/Oz)~=O, (3.1) 

which implies that the axial velocity and a combination of the angular speed and 
temperature given by o9 - ½0 are constant with respect to z, a result that may be referred to 
as the compressible Taylor -Proudman theorem. Ekman layers of thickness L-1E~ adjust 
the inviscid flow to the end caps. An outer Stewartson layer of thickness L½E *" and an inner 
Stewartson layer of thickness L~E ~ bring the inviscid variables to zero at the cylinder wall. 
This flow type is well known from the literature [1, 2, 3, 4] and follows from a modification 
of the incompressible case. The boundary layer thicknesses are small i fE ~ ~ L ~ E -~, which 
covers most configurations. When, however, the aspect ratio exceeds the upper limit of this 
range, both Stewartson layers successively fill the entire cylinder and radial diffusive 
processes become important when describing the flow field in the main section. 

The flow discussed above is only applicable when the speed parameter is of unit 
magnitude. In gas centrifuges A is quite large and then the solution of (2.21) and (2.22) is 
quite different from incompressible flow. 
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4. The  large density gradient 

The working fluid in a centrifuge is gaseous uranium hexafluoride (UF6). The most 

probable molecular speed x/2RoTo/M of UF 6 is approximately 120 m/s at room tempera- 
ture. This quantity is relatively small due to the large molecular weight of UF 6 (air: 

x/2RoTo/M ~ 480 m/s). Circumferential speeds of 500 m/s or more are quite normal today. 
Taking I2a = 500 m/s the speed parameter A becomes: A ~ 17. Consider the consequen- 
ces of such a large A. Inspection of (2.21) and (2.22) shows that the density function 
exp{A(r 2 - 1)} forms, with the Ekman number, a local Ekman number E exp{A(1 -r2)}.  
Although this local Ekman number is small at r = 1 it increases very rapidly with distance 
from the cylinder wall: e.g. for A = 17, exp{A(1-r2)} ~ 25 at r = 0 . 9  and 2.4 x 107 
at r = 0. Furthermore, the presence of the density function makes that all variables 
depend on exp{A(1 - r2)}: derivatives with respect to r will not be of unit magnitude but 
(0/0r) ~ A. In order to perform an adequate scaling analysis it is convenient to introduce 
a coordinate, measured from the cylinder wall, which corresponds to a change of unit 
magnitude of the density function: i.e. 

x = A(1 - r2), 0 _< x < A. (4.1) 

Furthermore we introduce 

~* = A~,. (4.2) 

Dropping the asterisk on ~ equations (2.21) and (2.22) become 

02 ~2 
2~z =L,E,I{4~---~eX~-~(1-A)+L-,2eX~z2 ~ 

0 2 
- 4 ( 1 - x ' ] ~ 2 L - * l e X ~ z }  (4.3) 

[( = L . E . e  x 4 1 -  d-~ {1 + ¼Br(1 - A ) } -  1 (1 - A ) 2  ~-~ 

02 
(4.4) 

The boundary conditions are 

x = ~ = ( O / O x ) ~ ,  = o 

= ( O / O z ) ~  = o 

Z = -½FI(x), x > 0 

Z = - ½ F z ( x ) ,  x > 0 

at x = O, 

at z = O  and z =1 ,  

at z = O, 

at z = l ,  

(4.5a) 

(4.5b) 

(4.5c) 

(4.5d) 
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where F a and F 2 are smooth functions of x. The modified Ekman number E ,  and the 
modified aspect ratio L ,  are based on the scale of the density decrease instead of the radius. 
These are related to E and L by 

E ,  = EA z, L ,  = LA. (4.6) 

Returning to the size and operational conditions of a gas centrifuge we take for the radius 
10- ~ m and 8000 N/m 2 for the UF 6 pressure at the cylinder wall. The viscosity of UF 6 is 
1.69 x 10-5 kg/ms, the heat conductivity is 6.68 × 10-3 W/mK. These values correspond to 
E ,  ~ 10 -4 and Br ,~ 2. Therefore we consider in the following A >> 1, E ,  ,~ 1 and Br ,,~ 1. 

Gas centrifuges have an aspect ratio which is of unit magnitude or larger. Since L ,  = LA we 
take L ,  >> 1. 

In the limit of E ,  --, 0 we obtain (3.1) by which we are unable to satisfy the boundary 
conditions for Z and ~u. Just as with incompressible flow Ekman layers have to be introduced 
at the end caps and Stewartson layers at the cylinder wall. In the compressible case there are 
complications however. Putting, led by experience in incompressible flow, in the interior 

Z = Zo, ~ = (E,eX)~'o, (4.7) 

and introducing this into (4.3) and (4.4), it follows that the terms on the right hand side have 
orders L , ( E ,  e*) ~, L ,  1 (E , e~) ~, L-,a(E ,e~) ~, L , ( E ,  eX) ½ and L ,  1 (E , eX) ~ compared to those on 

the left hand sides. All these terms are small if 

(E,  eX) ½ ~ L ,  ,~ (E,e*) -½, (4.8) 

where E ,  is supposed to be small, but where e x increases from 1 to e a which is supposed to be 
very large. 

An inviscid flow can be expected if E~, ~ L ,  ~ E ,  ~, but, due to the increase of e x with 
distance from the cylinder wall, such an inviscid flow is only observed in a limited region 
near the cylinder wall. Consider for example the case L ,  ~ 1. Then condition (4.8) is only 
satisfied for x ,~ ln E ,  1 (for E ,  = 10 -4 this means x ,~ 10). At x , - , l n E ,  1 the local 
modified Ekman number, E , e  x, is of unit magnitude and here ~11 terms on the right hand 
sides of (4.3) and (4.4) are comparable to those on the left. Of course since x is at most A (the 
rotation axis), such an "all terms diffusive core" does not occur when In E ,  1 ,> A. 

We are concerned with the case L ,  >> 1. Then we can conclude from (4.8) that an inviscid 
flow is only observed if 

1 ~ L ,  ~ E ,  ½, (4.9a) 

in a region near the cylinder wall given by 

x .~ In(L2,E,) -1 (4.9b) 

In the following we refer to the range (4.9a) as THE UNIT CYLINDER. The diffusive flow at 
x _> In (L2E,)  - 1 will be investigated in greater detail in Section 5 below. 

The inviscid solution cannot satisfy the boundary conditions at the end caps. To 

Journal of Engineering Math., Vol, 12 (1978) 265-285 



272 J. J. H. Brouwers 

overcome this non-uniformity layers of the Ekman type are needed. For these layers we 
introduce 

Z -Zo ,  gl = (E,eX)½t~o, ½ - ½ j  - z = - j L ,  l(E,eX)½y, (4.10) 

where j = + 1 at the bottom and j = - 1 at the top. In terms of these variables and letting 
(E,e~) ~ ,--, 0 the equations (4.3) and (4.4) become 

~o 0~0o 2j c?y (3y 4 , (4.11) 

2,{1 Oy Oy 2 " (4.12) 

Just as in incompressible flow the thickness of the Ekman layer is proportional to the square 
root of the kinematic viscosity v = l,/p. But in the compressible case the density decreases 
with distance from the cylinder wall and therefore the layer becomes thicker with increasing 
x (see (4.10)). 

Furthermore, in deriving (4,11) and (4.12) terms ~ (E,eX) ½ have been neglected. This is no 
longer justified at x ,-, In E ,  t where fill terms of the original equations become important 
and where the layer has increased to a thickness ,,-L,L This shows that the approximation 
of inviscid flow and Ekman layers is not uniformly valid up to the rotation axis. As long as 
x ,~ ln E ,  1 (4.11) and (4.12) describe a boundary layer flow within which only axial 
diffusion is significant. From equations (4.11) and (4.12) with boundary conditions (4.5b), 
(4.5c) and (4.5d) the Ekman suction conditions for the flow outside the boundary layers are 
obtained as* 

( / x\)~l+¼Br~l_Z~) ~ 'u_½(E,eX) ,Z= +¼(E,eX),F 1 at z = 0 ,  

( [" \ 
at z = l ~  

(4.13a) 

(4.13b) 

provided that 

0 < x  ~ l n E ,  1 . 

Applying these conditions on the inviscid flow one finds 

Zo = - ¼ { F 1  + F2} ,  ~'0 = 1 + ¼Br 1 - {F1 - F2} ,  

(4.13c) 

(4.14a) 

provided that (cf. (4.9b)) 

* Differential rotation of the end caps or axial injection and removal of fluid at the end caps can be fitted in the 
irunctions F 1 and F 2 in (4.13): the presented solutions for the flow outside the Ekman layers remain qualitatively 
unaffected [12]. 
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0 < x ~ In(LZE,) -1, (4.14b) 

where Zo and ~o are defined by (4.7). 
For FI(0 + ) ¢ 0 and F2(0 + ) ¢ 0 solution (4.14) does not satisfy the boundary conditions 

at the cylinder wall. Therefore two layers of the type first discussed by Stewartson [11] are 
needed. The scaling rules for the inner layer are 

- - i  l ~  E ~E o,, E ~ ~ (4.15) Z =  , ,,tl, ~u= ,~u 1, x = ( L , E , ) + ( 1  . 

Putting (4.15) into (4.3) and (4.4), and letting L,1E~, ~ 0 and L , E ,  ~ O, the equations 
become 

t~l 04~1 (4.16) 
W - 8 a ¢ 4 ,  

- (1  + ¼Br) t3~71 0221 (4.17) = 2 

The scaling rules for the outer layer are 

= ~ = E ~ "  = D , E + , ( E  . ( 4 . 1 8 )  X )~2' ~ *~//2' X 

Substituting (4.18) into (4.3) and (4.4), and letting L,1E~, ~ 0 and L,E~, ~ 0, we obtain 

(~2 (~ ~/~2 ~2)~2 
az - 0 '  - (1  + ¼ B r ) ~ - z  ---2 ~22 . (4.19) 

Both layers are terminated at top and bottom by Ekman layers. The outer layer adjusts Z, 
but not in its second derivative with respect to x, and the inner one completes the 
adjustment and brings ~u to zero at x = 0 [13]. Equations (4.16), (4.17) and (4.19) with 
appropriate boundary conditions do not essentially differ from those given for incom- 
pressible flow. This is due to the requirements L ,  ~ E ,  ½ and L ,  ~ E ,  1 for outer and inner 
layer respectively, by which the density is constant over the layers (e x = 1). When L,  > E ,  ~ 
the thicknesses of both layers become successively comparable with the distance over which 
the density decreases appreciably. According to (4.9), however, diffusion comes up from the 
core in that case and an inviscid flow no longer exists. When Stewartson layers occur they 
are regions of virtually constant density. 

5.  T h e  d i f f u s i v e  c o r e  

The approximation of inviscid flow is not uniformly valid up to the rotation axis. Physically 
this can be understood by noting that at constant dynamic viscosity the kinematic viscosity 
varies as p -  1. Since the density decreases strongly with the distance from the cylinder wall, 
the flow becomes more and more viscous. For an analysis of the viscous flow in the core we 
consider THE UNIT CYLINDER: 1 ,~ L .  ~ E .  ~. Since L .  1 is small the z-derivatives on the right 
hand side of (4.3) and (4.4) can be neglected compared to the x-derivatives, independent on 
the magnitude of e =, with the result that 
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and 

(5.1) 

O ~ ' - 2 L , E , e ~ ( 1 - A ) - I ~ - x { I + ¼ B r ( 1 - A ) } - I ( 1 - A )  20Z Oz Ox " 
(5.2) 

The boundary conditions at z = 0 and z = 1 are given by the Ekman suction conditions, 
(4.13). These conditions are only applicable as long as x ~ In E ,  x but, as will be shown in 
the subsequent analysis, this forms no limitation for the description of the main flow field in 

the core. Introducing 

x = ~h + In (L ,E , )  -1, ;C = bL.~21, ~ = bL.~01, (5.3) 

where b is (at present) an arbitrary constant, equations (5.1) and (5.2) become to lowest 

order 

02x = 8a~ e"' e -" '01 ,  (5.4) 
dz 

- ( 1  + ¼alBr) 001 0221 (5.5) 
= 2oqe" dr/~ ' 

where 

al = 1 - A -1 l n ( L , E , )  -1 (5.6) 

In the following we refer to the above deduced viscous layer at x ~ In ( L , E , ) - x  as the inner 
layer. In terms of the radial coordinate its position is given by r 2 ~ a r In deriving (5.4) and 

(5.5) we approximated 1 - x/A by the constant al:  i.e. 

1 - x / A  = a 1 - A - 1 ~ 1 1  ~ a x. (5.7) 

This is valid as long as 

alA ~ 1, (5.8) 

which implies that the inner layer must be situated at a radial position that is large 
compared to A -~ or r 2 ~ A-1.  When it is situated somewhere in the middle of the cylinder 

(a 1 of unit magnitude) condition (5.8) is satisfied since we took A ~ 1. The exponential 
increase of the terms on the right of (5.1) and (5.2) is responsible for the above balance at 
x ~ l n ( L , E , ) -  1. Similarly, for x ~ l n ( L , E , ) -  1 the diffusive terms dominate over the inertia 

terms, whence 

{10~rrLe_A(r2_l) ~-~r2~2eatr2-1)~adr J = O, (5.9) 
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1 t3 (1 + ¼r2Br) -lr3 ~ r  d 0, (5.10) 
r 3 Or 

where we re int roduced the coordinate  r. In tegra t ing  (5.9) and (5.10) with respect to r and 
requiring that  the angular  velocity, t empera tu re  and axial velocity are finite as r ~ 0 and 

t h a t  the radial mass  flow is zero at r = 0, one gets 

V/d = C1(1 - e-A~)/r2, %n = C2' (5.11) 

These "pure  diffusive solut ions" describe the flow between the inner layer and the ro ta t ion  
axis. The integrat ion constants  C a and C 2 are found by matching  (5.11) to the inner layer 
solution. Expanding  r 2 in (5.11) in terms of the coordinate  ql it follows that  Xn and ~u d are 

cons tant  with respect  to r h ,  provided that  (5.8) is satisfied. The bounda ry  condit ions for the 
inner layer are therefore 

(O/Orb)21 ~ 0, (O/&ll)~l "~ 0 as ql ~ ~ .  (5.12) 

Put t ing  (5.3) into (4.13) and dropping  terms ~ L ,  ~ and ~ ~ - 1 A - 1  compared  to unit 
magni tude,  the E k m a n  suction condi t ions for the inner layer become 

~1 = +¼{1 + ¼Br~}-~'b-ae½"'Ft at z = 0, (5.13) 

O~ = -¼{1 + 1Br~x}-~b-le½"'F2 at z = 1. (5.14) 

Fo r  r h - - * -  ~ the inner layer must  match  the inviscid solution. In  the inviscid region 

Z ~ El ,  F 2 and ~, "~ E½"~x';.~ - x  ( =  L,~;e½"~F1), E~.e~XF2 ( =  L,~e½"'F2) • Consider  the case tha t  
the inner layer adjusts Z. Then we must  take b = D.  in (5.3), if F 1 ~ 1 and F 2 ,-, 1 at r/1 ~ 1, 
and since L .  >> 1 (5.13) and (5.14) reduce to 

~ 1 = 0  at z = 0  and z = l .  (5.15) 

In tegra t ing (5.5) with respect to z f rom 0 to 1 and applying (5.15) it follows that  

Orl~ 21 dz = O. (5.16) 

One  sees that  

f~ 21dz (5.17) 

is a linear function of/71 and, consequently,  cannot  tend to two different finite values as 
~/1 --* - ~ .  As a result, the inner layer cannot  adjust  Z to its pure  diffusive value near  the 
ro ta t ion  axis. Therefore  a second layer, referred to in the following as the outer layer, is 
needed. The  inner layer is used to adjust  ~u which means  b = 1 in (5.3). 

In t roduc ing  

x = r/2 + In (L2,E,) -x,  Z = 2 2 ,  ¢z = L .  1~//2, (5.18) 
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into (5.1) and (5.2), and letting L ,  2 ~ 0, we obtain 

6;?2 
Oz = 0, (5.19) 

~/2~Z --2enU(52--~)-1~2{1-blBr(52--~)}-l(52--ff~) 2~;72~?/2' (5.20) 

where 

52 = 1 - A -1 ln(L2E,) -1 (5.21) 

Applying the Ekman suction conditions one finds from (5.19) and (5.20) that 

_ 1 1 

Putting (5.22) into (5.20) one gets 

2{1 + ¼Br(52 - -~-)}-¼ e~"2 (52 - ~ - )  - 1 - d d  x d?/2 

~ 2  - 22 = ¼(F1 + F2)- (5.23) 

In principle, equations (5.22) and (5.23) contain all terms necessary for a description of the 
flow in the region between the inner layer in the core and the Stewartson layers near the 
cylinder wall. Consider the inviscid region. For ~/2 ~ - In (L2E.)- ~ the first term on the left 
of (5.23) becomes small with the result that ;?2 ~ -¼(F~ + F 2 )  , which is exactly the inviscid 
solution. Furthermore, putting this result into (5.22) one obtains the inviscid solution for ~. 
However, we are interested in the region ?/2 ~ 1, referred to as the outer layer, where radial 
diffusion ofx  is important. In this region more analytical progress can be made by requiring 

52A >> 1, (5.24) 

which implies that the outer layer must be situated at a radial position that is large 
compared to A -~ (note in passing that the outer layer is situated at r 2 ~ 52). In this case the 
term 52 - ?/2/A can be approximated by the constant 52 by which (5.23) simplifies to 

252(1 + ¼52Br)-¼e½'12 d2;72 d?/2 - ;72 = ¼(F~ + F2). (5.25) 

For 712 "~ - -  OO ;?2 must match the inviscid solution: i.e. 

;?2 ~ -¼(El + F2) as ?/2 ~ - or. (5.26) 

For ?/2 ~ + ov ;?2 must match the inner layer. As was shown above, in the inner layer Z is up 
to O(L, ½) continuous with respect to x and therefore the outer layer directly brings Z to its 
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pure diffusive value: i.e. 

(d/d?]2)22 ~ 0 as /']2 "~ + 00. (5.27) 

Differential equation (5.25) with boundary conditions (5.26) and (5.27) can be solved by 
means of the Hankeltransform of zero order [12]. 

In the region between inner and outer layer, 0 ~ q2 ~ In L,,  the first term on the left of 
(5.23) dominates over the second one (since e TM is large) with the result that 

r] - 1  r ] 2 ~ 2  d2  2 

dr/2 

_ t /  -,~ 
= 1 { 1 +  ¼Br(o: 2 ~ ) }  (ct 2 - ~ - ) e - ½ " 2 { F I + F 2 } .  (5.28) 

According to (5.28))?2 ~ e-½"2F~, e-½"2F2 and since t/2 >> 0 (5.22) may be simplified to 

1~2 = 1 + ¼Br ct 2 - e~"~{Fx - z(F 1 + F2) }. (5.29) 

These solutions describe the flow in the region between inner and outer layer and are used to 
determine the conditions for the inner layer when t h ~ ~ .  Expanding the outer layer 
variables in (5.28) and (5.29) into those of the inner layer and then letting e~-XA-1 ~ 0, we 
obtain 

~x ~ ¼(1 + ¼~Br)-~'e½"l{Fx - z(F 2 + F1) } as t/1 ~ - ~ ,  (5.30) 

~322x_ ,,, (1 + ¼aiBr) ~" e_½,,{F2 + El } as ~/1 ~ -oo .  (5.31) 
~?t/~ 8~  

The inner layer problem is now specified by differential equations (5.4)-(5.5) and boundary 
conditions (5.12), (5.13), (5.14), (5.30) and (5.31), where b = 1. 

The outer layer at x ~ In(L%E,) -1 or r 2 ,-~ ~2 brings g to its pure diffusive value at the 
rotation axis. The inner layer at x ~ In (L ,E , ) -1  or r 2 ~ ~1 adjusts (O2/Ox2)z and ~,. Just as 
in the inner Stewartson layer at the wall the x-derivatives of Z and ~, are significant in the 
inner layer, while, as in the outer Stewartson layer at the wall, only the x-derivatives ofz  are 
important in the outer layer. On the other hand, in both Stewartson layers the exponential 
density gradient is negligible. In the core the strong variation of the density is the cause of 
the different flow regions, one dominated by inertia (the inviscid region), one dominated by 
radial diffusion of Z (the region between inner and outer layer in the core) and one 
dominated by radial diffusion of both Z and ~u (the pure diffusive region near the rotation 
axis). 

The thicknesses of these regions are large compared to the density scale, whereas the 
thicknesses of the layers which couple these regions are equal to the density scale, as follows 
from the equations (5.4)-(5.5) and (5.23). Since the density scale is small compared to the 
radius, terms of the type r 2 c a n  be approximated by a constant local value, r 2 "-- ~X 1 and 
r 2 ~  O~ 2 in inner and outer layer respectively, provided that conditions (5.8) and (5.24) are 
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A 

C. 

< ln(L.~) - '  

< ln(-12F~-' 

L~'E2". 

/g,E,/: 

Figure 1. THE UNIT CYLINDER. 

satisfied. If these conditions are not satisfied, either both layers are located in the immediate 
vicinity of the rotation axis r ~ A -~ or they do not appear at all. In the latter case one 
observes an inviscid region up to the rotation axis. However, in gas centrifuges this is 
certainly not the case. Taking L = 1, A = 17 (L. = 17) and E .  = 10 -4 one finds al = 0.62 

and ~2 = 0.79. Having in mind that L > 1 and that ~1 and ~2 increase with L, it is clear that 
if there is an inviscid region it is only observed in a small region near the cylinder wall. As 
already stated, the Ekman layers increase in thickness with distance from the cylinder wall 

and at x ~ In E .  1, where the thickness is -~ L .  1, also radial diffusion becomes important.  
For x >> In E .  1 and z ~ L .  1 all diffusive terms remain comparable with each other but 
dominate over the inertia terms. 

The inner and outer layer in the core are situated at a radial position that falls within the 
range x <{ ln E .  1. Therefore, the complicated "all terms regions" do not need to be 
considered in order to describe the flow in both layers in the core. Figure 1 illustrates the 
various flow regions in THE UNIT CYLINDER. 

The flow in the core of the cylinder has been analysed using a Navier-Stokes model. Due 
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to the low density with correspondingly long mean free paths, this may become invalid 
near the rotation axis. The mean free path is comparable to the density scale when 
x ,~ In (E,/A ½)- l, which falls within the pure diffusive region since A > 1 and L, >> 1. Hence, 
the matching of the various layers occurs farther out toward the cylinder wall and remains 
unaffected. 

6. The semi-long and long cylinder 

The description in terms of an inviscid flow extended by Stewartson layers at the wall and 
viscous layers in the core is valid if 1 ,~ L, ,~ E ,  +. Since L,  can reach considerable 
magnitudes, the fluid motion where L, exceeds the upper limit of this range is also of 
interest. For this purpose we consider the distance scales of both layers in the core and the 
thickness scales of both Stewartson layers. For L, ,~ E ,  ½ the outer Stewartson layer 
expands over the density scale. Simultaneously the outer layer in the core comes up and 
joins the Stewartson layer. For L, ~ E , '  the inner Stewartson layer and the inner layer in 
the core expand and come up, respectively, and join. One expects that for E ,  ½ ,,, L, ,~ E ,  1, 
referred to as THE SEMI-LONG CYLINDER, the x-derivatives of;¢ in (5.2) become important in 
the entire cylinder. For L,  ~ E ,  1, referred to as THE LONG CYLINDER, the x-derivatives of q~ 
in (5.1) will do the same. The Ekman layer retains its small thickness and is still the region 
within which the flow is adjusted to the end caps. 

At first the flow in THE SEMI-LONG CYLINDER is discussed. The x-derivatives of Z become 
important by putting 

X = L-,1E,~z1, ~' = E~,~', • (6.1) 

Here, the magnitude of ~u corresponds to the induced flux of the Ekman layers, Substituting 
(6.1) into (5.1)-(5.2) and letting L2,E2, ~ 0 we get 

011 = 0, (6.2) 
Oz 

(6.3) 
az t t A-J J" t, 7-) ax 

Applying the Ekman suction conditions one finds from (6.2) and (6.3) that 

u/1 = 1{1 + ¼Br(1 - ~-)}- '~ x 

x e½X{½F, + L-,1E,½x1 - z(½F 1 + ½F z + 2L,1E,½xx)}. 

Putting (6.4) into (6.3) one gets 

2 {1+  ¼ B r ( 1 -  A ) } ~ e ½ X ( l - A )  -1 d ~ { l +  ¼ B r ( 1 -  A ) } - '  x 

× 1 A J  dx L*IE*+xi=¼(FI+FE)" 

(6.4) 

(6.5) 

Journal of Engineering Math., Vol. 12 (1978) 265-285 



280 J. d. H. Brouwers 

Equations (6.4) and (6.5) describe the flow in the region between the inner layer in the core 
and the inner Stewartson layer at the cylinder wall: 0 < x ~ ln(L,E, ) -1 .  In the region x 
~ 1 the term 1 - x/A can be approximated by 1 by which (6.5) simplifies to 

d2z1 
2(1 + ¼Br)-~e ~ ~ L,1E,k:Z1 =¼(F l +F2). (6.6) 

For x ~ ~ Z1 must match the inner layer in the core and for x ~ 0 )~1 must match the inner 
Stewartson layer at the cylinder wall. In the inner Stewartson layer and in the inner layer in 
the core, however, Z is continuous up to O(L,~E~.) and up to O(L,½), respectively. Therefore 
Z1 is directly brought to zero and to its pure diffusive value, respectively: i.e. 

Zx = 0 at x = 0, (6.7) 

(O/Ox)z1 ~ 0 as x ~ ~ .  (6.8) 

The differential equation (6.6) with boundary conditions (6.7) and (6.8) can be solved by 
applying Greens' functions with the modified Bessel functions of zero order as kernel [12]. 

In the region 0 ~ x ~ In (L,E,)-~ the first term on the left of (6.5) dominates over the 
second one (since e ~x is large) with the result that 

d-~ {1 + ¼Br(1 - A ) ) -  x (1 - A ) 2  ~Z; = 

= I { I + ¼ B r ( 1 - A ) } - ' ( 1 - A ) e - ½ X ( F ~ + F 2 ) .  (6.9) 

According to (6.9)Xl " ~  e-~XF1, e-½XF2 and since x >> 0 (6.4) may be simplified to 

(6.10) 

Solution (6.4) does not allow the boundary condition for 9, at x = 0 to be satisfied. 
Therefore the inner Stewartson layer is needed. The inner layer in the core adjusts ~u to its 
pure diffusive value near the rotation axis. The equations and boundary conditions are the 
same as those given in connection with THE UNIT CYLINDER. A diagram of the various flow 
regions in TUE SEMI-LONG CYLINDER is given in figure 2. 

In the particular case that the imposed boundary conditions are antisymmetric with 
respect to the mid-plane z = ½, F 1 = - E L ,  the solution from (6.4) and (6.5) is identical with 
the inviscid one. This situation, of course, could be expected since for F 1 = - F 2 Z is zero in 
the inviscid region. Then no outer Stewartson layer and no outer layer in the core are 
needed and expansion of these layers is irrelevant. The flows in THE UNIT CYLINDER and THE 
SEMI-LONG CYLINDER a r e  the same. 

Finally the flow in THE LONG CYLINDER is discussed. Introducing 

(6.11) 
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A 

<] tn(l~eJ-' 

L~ 3 

tnE~' 

Figure 2. THE SEMI-LONG CYLINDER. 

and approximating 1 - x/A by 1, equations (5.1) and (5.2) become 

~Z2-  { 0 x 0 }2e-X 
0z 8L,E, ~ x  e ~ [//2, 

- (1  + ¼Br)-~- = 2L,E,e ~ 02X2 
0X 2 " 

Eliminating Z2 from (6.12) and (6.13) it follows that 

0 2 f 0  x 0 } 2 ~ X  + ¼ B r ) ~ = 0 ,  16L2,E2,eX~x2~Txe e-~u2 + (1 

the solution of which is given by 

~ =~=~ ~l+¼~r)~ j , 1 . . o , ,  , f  k(X), 

(6.12) 

(6.13) 

(6.14) 

(6.15) 
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where fk satisfies the differential equat ion 

d 2 f d  ~ d )  2 

16e ~x2 ~-~x e dx~ e- ~fk "~- "~kfk =0" (6.16) 

The boundary  conditions for fk at x = 0 are deduced from (4.5a): i.e. 

fk--  dx  ( d x  ~-x  e - x f k = 0  at x = 0 .  (6.17) 

For  x ~ ~ X2 and 1if2 must match their pure diffusive values. In terms of f4 this means 

dfk d ( d x d ] 2 
~x = d x  ~-~x e dx~ e-xfk"~O as x ~ o v .  (6.18) 

The basic solutions of the non-self-adjoint differential equat ion (6.16) are 

fk  = fllO q- f i l l  e - 2 x  q- fl12 e - 4 x  q- " " ,  

f120 e - x  -F fl21e - 3x -Jr fl22 e - S x  q- . . . .  

f laoXe -~  + f l31xe  -3x  + fla2Xe -5x  + . . . ,  

f140 x + f l 4 l x e  -2x  + flaxXe -4x  + . . . .  

flsoX2 e - x  "+" f151x2 e -3x  "Jr f152x2 e -Sx  Jr . . . ,  

f160 ex + f161xae - x  + f162xae -3x  + f163xae -Sx  + . . . ,  

(6.19a) 

(6.19b) 

(6.19c) 

(6.19d) 

(6.19e) 

(6.19f) 

where flxi, fl2i, J~3i' J~4i' flSi and f16~, i > 1, are a linear function of the basic coefficients fllO, 
f12o, flao, f14o, flso and f16o- In order  to satisfy the boundary  condit ions (6.18) f14o, f15o and f16o 
must  be set equal to zero. As a result, the solutions (6.19d), (6.19e) and (6.19f) can be 
dropped,  whence 

L 5' ° -2,x e-X = ]Jli e -{- ~ fl2ie -2ix + x e  -~  flaie -2ix.  
i=O i=O i=O 

(6.20) 

Application of two of the three boundary  condit ions (6.17) expresses f12o and f13o in fllO. 
Then, flli/fllO, fl2i/fllo and flai/fllo, i > O, are a function of 2 k only. The remaining condit ion 
at x = 0 is satisfied for an infinite series of positive real eigenvalues of 2 k, k = 1, 2 . . . . .  oo, 

where the eigenvalues are ordered such that  2 k < 2 k + 1. The two lowest eigenvalues are 

= 9.64 and x/~2 = 60.4. * A good approximat ion  for the first eigenfunction is given by f l  
= 1 - 0.60e -x - 0.48e - ~  + 0.08e -3~ - 1.35xe -~ + 0.03xe -3~ [12]. Substituting (6.11) 
into (4.13) and letting E~. ~ 0, the Ekman  suction condit ions become 

~u2 = +¼(1 + ¼Br)-~e*XF 1 at z = 0, (6.21) 

* The solutions corresponding to 2 k = 0 are incompatible with the boundary conditions (6.17) and (6.18). 
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~u 2 = -¼(1  + ¼Br)-÷e½XF2 at z = 1, (6.22) 

where, as before, 1 - x/A is a p p r o x i m a t e d  by  1. These b o u n d a r y  condi t ions  can be used to 

de te rmine  the cons tan t s  a k and  b k in so lu t ion  (6.15). Therefore  we mus t  expand  e½XF1 and 

e½XF2 into the eigenfunct ions fk app ly ing  the o r thogona l i t y  re la t ion 

fofkgje-Xdx = ~ j ,  (6.23) 0 for k 

where g~ is the ad jo in t  e igenfunct ion defined by  

d e ~ e_Xf~. (6.24) 

The  so lu t ion  for ;(2 is 

Z2 = - 8 ( 1  +¼Br)½k=X y" 2~½ akexp  ( i ~ J  

-- bkexp~'.-~ X/~kL*E*z)-] x 
) J  

! 

T 
g, / 

/ 
f . . . . . . . -  

I 
I 

| ! i | i 

o 

Figure 3. First eigenfunction of Z versus x. 
a: Asymptotic solution 
b: Parker & Mayo's solution for A = 16 
c: Parker & Mayo's solution for A = 9. 

I | g I 

x • lO 
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A differential equation similar to (6.14) has recently been studied by Bark & Bark 1-14] 
and Durivault & Louver 1-15]. However, these authors arrived at this equation by 
considering the inner Stewartson layer with a varying density. In these studies the boundary 
conditions are anti-symmetric with respect to z - ½ (F 1 = - F 2 in the present work) and 
x = (L,E,)~(,  where ( is the boundary layer coordinate and ( L , E , )  ~ is the ratio of the 
boundary layer thickness to the density scale. In contrast with the suggestions of these 
authors, the above presented solutions show that for L , E ,  ~ 1 the flow behaves in a diffusive 
manner over the entire cross-section of the cylinder. This finds expression in the decaying 
behaviour with respect to z, with the result that at a reasonable distance from both end 
caps the flow is mostly described by the first eigenfunction. In fact, it is impossible 
to find solutions from (6.14) which satisfy the boundary conditions (6.17), (6.21) and 
(6.22), and which match an inviscid flow as x ~ ~ !  

In case of a cylinder of semi-infinite length b k must be set equal to zero in (6.15) and (6.25). 
This is the situation considered by Ging [8], similar to the one of Dirac [6], but including 
effects due to heat conduction (Br ~ 0 in (6.15) and (6.25)). Steenbeck [7] and Parker & 
Mayo I-9] treated the semi-infinite cylinder without applying an asymptotic solution for 
large A but calculated numerically the radial shape of the first eigenfunction for various 
magnitudes of A. In figure 3 we have compared Parker & Mayo's calculation of 91 for A = 9 
and A = 16 to the asymptotic solution, where we took 91 = 1 as x ~ ~ .  One sees that the 
agreement is already good for A = 16. The same conclusion applies to the radial shape off1 
and the first eigenvalue. 
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